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Abstract 
 

Abstract 

Statistical inference has gained increasing policy relevance in the last couple 
of decades as antitrust policy and merger analysis raise the weight put on 
results of a statistical nature, based on econometric fitting of data to models. 
In the context of merger analysis, statistical inference is often used in the 
guise of a hypothesis test, where the test is on whether the merger will be 
harmful to consumers (and/or possibly to other competitors). The aim of this 
note is to review the methodological choices regarding the use of statistical 
inference. We focus on the implications of the choices of two main 
components of a hypothesis test: the choice of the null and alternative 
hypotheses; and the choice of the level of significance of the test. We discuss 
the interpretation of resulting outcomes and their implications for policy 
decision-making. 
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1 Introduction 

The goal of statistical inference in econometrics is to use the principles of 
statistics to make inferences about observed data. This analysis takes place in 
one of two frameworks, classical or Bayesian. The overwhelming majority of 
empirical study in econometrics has been done in the classical framework and 
this is therefore where our present focus lies. The three main stages of 
inferential statistics are sampling, estimation, and hypothesis testing. In this 
note we discuss a number of issues concerning the latter of the three. 

Hypothesis testing in merger analysis is often concerned with the test of 
whether or not the merger will be directly harmful to consumers and perhaps 
also indirectly through harm to other competitors. The statistical inference 
approach to this problem is to construct a hypothesis relative to merger 
impact and then use statistical formulas based on collected data to decide 
relatively to that hypothesis. Thus, the first important consideration of this 
process is the formulation of the hypothesis to be tested. The statistical 
methodology will give an answer relative to a given hypothesis, and the 
conclusions that can be drawn on that basis are often different from those that 
would result from a test based on a different hypothesis. In particular, finding 
strong statistical evidence against a specific hypothesis may not inform the 
researcher as to what the correct alternative to that hypothesis may be.  

The second consideration is with respect to how demanding the researcher 
will be in order to conclude against the initially formulated hypothesis. 
Regardless of what the initial hypothesis about merger harm is, we have to 
decide how much evidence we will require before rejecting that initial 
hypothesis. The researcher must be aware that a statistical procedure is not 
without error, and that therefore it is possible to reject the initial hypothesis in 
error, as indeed it is possible to not reject the initial hypothesis in error. The 
seriousness of these two errors must be considered and, to the extent possible, 
they must be minimised.  

In this note we will first briefly retrace the epistemology of hypothesis testing 
and how it fits within the scientific method. The most important difficulty 
with statistical inference is that the process of going from the knowledge of 
the particular cases of which we have information to the knowledge of the 
cases of which we do not is an inductive process. Unlike deductive methods, 
induction is not conclusive and is subject to a number of problems.  

We will proceed with a brief overview of what a hypothesis test is, which are 
its main component elements and, most importantly, the two types of errors 
involved. 

The two main sections of this note deal with the alternative ways in which we 
can formulate a testable hypothesis, on the one hand, and with the strength of 
statistical evidence that we wish to require in order to reject the chosen 
hypothesis, on the other. Our view is that these two elements are often chosen 
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in a mechanical way and this may result in a sub-optimal use of the tools of 
statistical inference in merger analysis and anti-trust policy in general.  

The ultimate goal of this note is thus to step back from a mechanical use of 
hypothesis testing and, by looking afresh at its theoretical foundations, 
understand the implications of alternative modelling choices, interpret the 
obtained results correctly, and understand the limitations of the method.  
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2 The foundation of hypothesis testing -
falsification versus affirmation 

When using empirical observation to make inductive inferences, we have a 
much greater ability to falsify a principle than to affirm it. One of the most 
significant contributions to epistemology by the Austro-British philosopher 
Karl R. Popper has focused precisely on this. Popper sustains that the 
scientific method does not use inductive reasoning, but rather hypothetical-
deductive reasoning. Although the movement from the data evaluating a 
hypothesis to a conclusion on the latter goes from the specific to the general, 
i.e. in an inductive direction, induction does not exist as a reasoning process 
or inference. In other words, there is no method that enables us to infer or to 
verify hypotheses or theories based on experimentation, or even to conclude 
that they are very probable in any meaningful way. Popper illustrated the 
point with this now-classic example: if we observe swan after swan, and each 
is white, we may infer that all swans are white.  We may observe 10,000 
swans, all white, and feel confident in our inference.  All of this evidence may 
make us think that we can prove that all swans are white.  However, all it 
takes is a single observation of a non-white swan to disprove the assertion 
that all swans are white. 

This view of the scientific method implies that the task of a researcher is to 
propose a hypothesis as a tentative solution to a problem, confront the 
prediction deduced from the hypothesis with actual experience, and evaluate 
whether the hypothesis is rejected or not by the facts. As theories cannot be 
verified, we can only maintain them if they withstand our attempts to reject 
them. Consequently, the test of a theory consists of criticism or a serious 
attempt at falsification, in order to reject it if it is false.  

Based on this theoretical underpinning, a common approach to statistical 
inference takes the following form: we develop a scientific theory; we 
construct a null hypothesis, which relates to that theory in some specific way; 
and then we do our best attempt at disproving it.  This process may seem 
contrived and confusing -- as if we’re building a straw man and then 
knocking him down -- but is in fact logically mandated by the Popperian 
view described above.  All of our current statistical theory, used in hypothesis 
testing, is based on this approach.  The ‘P-value’ often reported in statistical 
and econometric work is exactly the mathematical probability that we would 
find the observed values if the null hypothesis were true.  The lower that 
probability the greater the confidence we have in that we have falsified the 
null hypothesis.  

This epistemological approach is relatively silent as to what an appropriate 
null hypothesis should be. In light of the above, however, the statistical 
inference methodology should be understood as something that gives us the 
possibility to refute statements but not the possibility to confirm statements. 
This distinction may be difficult in practice, particularly when we are not 
testing a specific theory but rather searching for some empirical regularity, 
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such as whether a given occurrence in a sample of individuals can be 
generalised to a larger population. Consider, as an example, a medical 
experiment where in a sample of 1000 individuals, 500 are treated with a 
given drug and 500 are given a placebo. Suppose then that we find that in the 
treated population the incidence of the disease under study was 20% lower. 
The aim of statistical inference in such a situation could simply be to 
determine whether such a difference is or not “significant”. In other words, 
does it imply efficacy of the drug under test for a more general population? In 
statistical terms the question may be phrased as “how likely is it that we 
would get a 20% better result in the treated group if the drug were in fact 
ineffective?”. This phrasing implies that our null hypothesis is that the drug is 
ineffective and we are trying to assess how strong our evidence against it is.  

From a test thus formulated we would conclude either that the impact of the 
drug is not significantly different from zero or that it is significantly different 
from zero. We would not, in any event, conclude that the impact of the drug 
is a 20% decrease in disease incidence. 

We could instead formulate our question in the following terms: “how likely 
is it that we would get a 20% better result in the treated group if the drug 
were in fact effective?” If ‘effective’ is defined as a decrease in disease 
incidence of 20% or more, we would probably get a very high P-value for this 
test. But, would this be a strong conclusion? The result is no doubt consistent 
with an effective drug but we would be left wondering how likely would it be 
to obtain that same result by chance, i.e., even though the drug is in effect 
useless. Under this second test formulation it would not be possible to answer 
this question.  

In merger analysis, a testable null hypothesis is e.g. “the merger will not have 
a significant impact on prices”. It may seem that it is not possible to reject this 
statement while at the same time not “accepting” its negation. If we conclude 
that we reject the hypothesis that a given merger will not have a significant 
impact on prices, are we not then stating that the merger will have a 
significant impact on prices? In fact, the two alternative ways of testing will 
not yield the same conclusions. It we test the hypothesis “the merger has no 
effect” and reject it we may be reasonably convinced that merger has some 
effect, or at least we can tell how confident we are that that is the case. 
However, if we test the hypothesis “the merger has significant price impact” 
and do not reject it, we cannot be sure with what probability we mistakenly 
fail to reject a true hypothesis. This point is explained further below.  
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3 Elements of hypotheses testing in merger 
analysis 

A hypothesis test is a procedure that details how a sample is to be inspected 
to determine if it agrees reasonably well with a given hypothesis. It is 
essentially a decision rule that tells us when to reject or not reject the 
hypothesis. Decision rules are seldom infallible; false hypotheses may be 
accepted and true hypotheses may be rejected. The classical testing procedure 
involves the statement of a “null” or maintained hypothesis and an 
“alternative”. These are conventionally denoted H0 and Ha, respectively. The 
formulation of the statistical hypotheses is the first step in testing a 
hypothesis. 

The second step is to choose the level of significance. This represents the 
probability of rejecting a true null hypothesis. The level of significance used 
may vary, but an often-used level of significance is 5%. This significance level 
means that there is only a 5% chance of rejecting the null hypothesis when it 
is true. We use this level of significance to protect us against rejecting a true 
null hypothesis. The level of significance determines the size of the critical (or 
rejection) region. The critical region is the set of values for the test statistic for 
which we will decide to reject the null hypothesis. This region will be larger 
when the significance level is increased. We do not reject our hypothesis if the 
test statistic falls within the acceptance region.  

There are two types of errors connected with hypotheses testing. A type I 
error occurs when we reject a H0 which is true and the significance level of 
the test, α , is the probability of making a type I error. A type II error occurs 
when we accept a H0 which is false. The probability of a type II error is β . 
The smaller the value of β , the better is the test. Alternatively (1- β ), i.e. the 
probability of rejecting H0 when it is false (denoted the power of the test), 
should be as large as possible. The power of the test is the measure of how 
well the test of hypothesis is working. A low value of (1- β ) means that the 
test is working poorly. 

In hypothesis testing both α  (the probability of type-I error) and β  (the 
probability of type II error) should be small. Typically, the acceptable level for 
a type I error, or α , is usually set in advance by a researcher, but the type II 
error or β  for a given test is not always possible to compute as it requires 
estimation of the distribution of Ha, which is unknown in most of the cases. 
The power of the test, given by (1- β ) is different for each value for which Ha 
is true. Typically the power will be higher relative to alternatives that are ‘far’ 
from the null hypothesis but the power (of the same test) may be low for 
other values of the alternative hypothesis. This relationship can be 
summarised by a curve, known as a power curve.  

Ideally we would like to make the probability of both types of errors as small 
as possible. Unfortunately, this is not possible. To illustrate this consider the 
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results of a jury trial viewed as a hypothesis test. The accused is presumed 
innocent until proven guilty, so the corresponding hypotheses would be: 

H0: The defendant is innocent. 

Ha: The defendant is guilty. 

In this case a type I error would be sending an innocent defendant to jail. A 
type II error would be setting a guilty defendant free. If we were to set the 
burden of proof so high that we were sure that we never sent an innocent 
person to jail, we would probably end up setting all defendants free. Whereas 
if one were to set criteria so that a guilty party was never set free we would 
send quite a few innocent people to jail.  

Hypothesis testing thus involves the following steps:  

• Specify the Null Hypothesis (H0) and the Alternative Hypothesis (Ha).  

• Compute the appropriate test statistic based on the sample data. The 
sampling distribution, if the Null Hypothesis were true, is assumed to 
be known.  

• Think of the problem as a decision problem, and consider the relative 
importance and probability of Type I and Type II errors. 

• To control for Type I error choose a significance level α  and consider 
only tests with probability of Type I error no greater than α . 

• Among the tests, select one that makes the probability of a Type II 
error as small as possible (that is, power as large as possible). If this 
probability is too large, you will have to take a larger sample to reduce 
the chance of error. 

• Compute the Acceptance and the Critical Regions based upon the 
sampling distribution.  

• Reject the Null Hypothesis H0 if the test statistics falls within the 
critical region and do not reject otherwise. 
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4 The null and the alternative hypotheses 

The choice of the null and alternative hypotheses is not cast in stone. Rather, 
it is a significant first step in the process of hypothesis testing and thus 
deserves more attention than is frequently the case. This section is about the 
significance of the choice of the null hypothesis. We will discuss this choice in 
light of two different issues. First, we will look at the correct interpretation of 
what the test results signify relative to the original question of the researcher. 
Second we look at the implications of systematically choosing a null 
hypothesis of “zero” or “no effect”, in terms of what will become the more 
likely conclusions from the procedure.  

4.1 The null hypothesis and the interpretation of 
the test 

One of the questions raised by the methodology of hypotheses testing is 
whether results and conclusions are sensitive to the choice of the null 
hypothesis. A hypothesis test is a test relative to a given null hypothesis. The 
test conclusion is whether or not that null is rejected. The test does not 
provide a conclusion relatively to the alternative hypothesis. This is an 
important element for the interpretation of a test and it will guide us as to the 
more appropriate formulation of the null hypothesis. We have to consider, 
essentially, what hypothesis do we really want to put to a test. 

We obtain a powerful result from the exercise of hypothesis testing only if we 
reject the null hypothesis. If we reject the null, we can do that with a pre-
determined degree of confidence. This degree of confidence can be set 
arbitrarily high. Tests with 95% or 99% degrees of confidence (i.e. levels of 
significance of 5% and 1%, respectively) are not uncommon. In a 95% test, if 
we reject the null, we would be 95% “confident” that the null is indeed false. 
This means that, upon rejection of H0, H0 is very unlikely to be true, and we 
can pre-set exactly how unlikely we want that to be. 

What this implies in a merger impact analysis is that if we define H0 as “the 
merger has no impact on prices” and we reject that at a high level of 
confidence, then we will be quite confident that the assertion “the merger will 
not have an impact on prices” is untrue. Thus, we can reject the hypothesis 
that the merger will not have an impact on prices with a high degree of 
confidence. However, we cannot conclude, with a certain defined level of 
confidence, that the merger will have an impact on prices.  

Alternatively, we could be interested in investigating whether we would be 
able to confidently reject the assertion that the merger will have, say, 5% or 
more impact on prices. This type of test would lead to a different statement of 
the results: rejecting H0, in this case, implies that we are highly confident that 
it is not the case that the merger will have a price impact of 5% or more. 
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However, again, we cannot conclude, with a given level of confidence, that 
the merger will have an impact on prices of less than 5%.  

When H0 is “the merger has no price impact”, we are looking for strong 
statistical backing against the “no impact” scenario. This means that we will 
require strong statistical evidence as a condition to stopping the merger.  

When H0 is “the merger has an appreciable price impact”, we are looking for 
strong statistical evidence to back a decision of letting the merger go ahead.  

Which of the two is the best way to proceed? Clearly it seems that there 
cannot be a single answer to this question. The answer may vary from case to 
case and it may also depend on what other information has been gathered. If 
a market investigation by the competition authorities has lead to the 
preliminary view that the merger would, in all likelihood, be harmful to 
consumers, the competition authorities would probably want to obtain very 
convincing statistical evidence to the contrary before deciding to let the 
merger go ahead.  

Consider, therefore, the situation where the prior of the authorities is that the 
merger will be harmful, i.e. the non-statistical evidence points to a decision of 
not letting the merger go through. If H0 is “the merger is harmful”, a rejection 
of the null would point to allowing the merger (contrary to the previously 
held opinion). If we reject this H0 in a, say, 95% test, it implies that the 
statistical evidence is strongly against the assertion that the merger is 
harmful.  

On the other hand, if the prior is that the merger is harmful but the null 
hypothesis is “merger not harmful”, then the test would never result in 
taking a decision contrary to the initial prior. If we maintain H0 we do not 
know with what degree of confidence we are doing that so that we would not 
be able to use that result as a basis of a policy decision. If we reject H0 we 
would find additional evidence in favour of the initial prior. The process thus 
described does not therefore put our prior to the test. We are never allowing 
for the possibility of strongly rejecting our prior. It’s an exercise in 
“affirmation”, i.e. it may contribute one more piece of evidence in favour of a 
given view, but it is overall inconclusive in that it will never make us change 
our initial view.  

In general, when the conclusion from hypothesis testing is that we do not 
reject H0, the test has not been helpful, in the sense that it has not helped us 
forming an opinion either way. There is often the somewhat misguided view 
that a test that does not reject H0 does therefore lend support to H0. This, 
however, is not correct. A statement such as “the test gives evidence in favour 
of the null hypothesis” is often an incorrect way of stating the result because 
this statement can generally not be made precise in the sense that we cannot 
actually compute the probability with which we would mistakenly fail to 
reject a false null.  
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4.2 Null hypotheses and decision making: an 
example 

In this sub-section we illustrate with an example how the choice of the null 
hypothesis may change the way in which results are reported. 

In the figure below we depict the rejection bounds for two different 
hypotheses testing procedures. In one case (the left hand side distribution) we 
test the null hypothesis b=0, in the other case (right hand side distribution) 
we test the null b=6. The estimator, in both cases, is assumed for simplicity to 
have normal distribution with standard deviation equal to 3. 

When we test b=0 we do not reject for parameter estimates below 4.94. When 
we test b=6 we do not reject for values above 1.06. Thus there is wide range of 
possible parameter estimates that would lead us to reject neither of the two 
nulls. There is an interval of parameter estimates, between 1.1 and 4.9, where 
we would neither reject that b=0 nor that b=6.  

If this were a merger case, our parameter estimate could refer to the 
percentage estimated price impact of the merger. If we started with a null 
hypothesis that the merger has no price impact, and a parameter estimate in 
the above range, we would not reject that null. We would be tempted then to 
consider that we had found econometric and statistical backing to let the 
merger go through. If however we departed from a null hypothesis that the 
merger is harmful and that prices will increase about 6% as a result of the 
merger, and with any estimate in that same range, we would also not reject 
that hypothesis. This could then lead us to believe that we had obtained some 
evidence against the merger.  

This type of analysis, clearly, is internally inconsistent. It is impossible that an 
estimate of e.g. 3 is simultaneously evidence that the merger is likely to be 
harmful and likely not to be harmful. The right interpretation can only be that 
an estimate of 3 gives evidence in favour of neither of the two hypotheses.  
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Figure 1: The choice of the null hypothesis: example 
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Do not reject H0 b=0
if below 4.94

Do not reject H0 b=6
if above 1.06

 

 

 

 

The example thus illustrates how a non-rejection of a given null hypothesis 
may have little practical meaning. We should therefore consider inconclusive 
the conclusion of “not rejecting H0”. 

What we try to point out with this example is that it would seem 
inappropriate for a decision in a merger case, or indeed in any other context, 
to be based on a statistical conclusion where we do not reject H0. This is 
precisely because not rejecting, in this context, is a statement without 
statistical force. In particular, there may be a wide range of other hypotheses 
that would also not be rejected1.  

 

                                                      

1 There is a readily available statistical tool that gives us all the “null hypotheses” that would not be 
rejected – this is the confidence interval around the parameter point estimate.  
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5 Significance levels and power of the test 

In this section we discuss the trade-off between type I and type II errors and 
how the level of significance of a given exercise of hypotheses testing should 
be set to take into account the specific circumstances of each situation.  

Researchers do not often appear to devote much attention to the choice of a 
significance level. The most common approach is that a convention is 
followed. There is rarely an attempt to balance or even highlight the trade-off 
implied by this choice. 

In practical applications, the most commonly chosen level of significance is 
perhaps 5%. It is also very commonly the case that the power of the test is not 
reported. In most cases, in fact, the power cannot be computed because it 
depends on the true state of the world when the null hypothesis is false. The 
researcher does not know what the true state of the world is when the null is 
false. For example if the null is that a given parameter is equal to 2, when this 
null is false the true value of the parameter may be 10 or it may be 2.01. 
Holding everything else constant, a statistical test will have more power in 
the former case than in the latter. Thus, power can be computed relative to 
relevant values for the alternative hypothesis. In many applications, a whole 
range of possible values for the parameter, in the event of the null being false, 
should be considered.  

Researchers often set a, say, 5% probability for type I error but will not report 
the power of the test or the probability of type II error. There are two essential 
problems with this way of constructing the test. First, the resulting 
probability of a type II error may be extremely high. Second, that probability 
is dependent on the type I error probability, and the approach often chosen 
fails to highlight this trade-off. In fact, the more demanding the test is in 
terms of a type I error, the worse it will do in terms of type II error. This 
should concern researchers since it is unlikely that in all possible 
circumstances type I errors are always “more serious” than type II errors.  

A 5% significance test may be a test with very low power. We may have a 5% 
probability of committing a type I error while having a 20% probability of 
committing a type II error. In this case we would be 4 times more likely to 
commit a type II error than a type I error. One would think that, in such a 
case, it could be acceptable to have a slightly higher chance of a type I error in 
exchange for a decrease in the probability of type II error. A decision has to be 
made as to what type of trade-off is acceptable. Such decisions must depend 
on the consequences, and associated costs, that would result from each of the 
two types of errors.  

In the world of medicine, a null hypothesis might be "this drug will be no 
more effective than a placebo.” A type I error would be concluding that the 
drug does work when it actually does not. A type II error would be to 
conclude that the drug does not work when it actually does. One could argue 
that a type II error should be minimized here if one agrees the possibility of 
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wasted resources is a low price to pay in the search for a potentially life-
saving therapy. 

In the legal world, the null hypothesis is generally “this person is innocent.” 
A type I error would be judging the person guilty when he/she is innocent. A 
type II error would involve declaring the person innocent when he/she is 
guilty. If one accepts the thought that it is better to release a guilty person 
than to convict an innocent one, then it would be important to minimize the 
chances of a type I error. Should this be generalised to all types of legal 
proceedings though? Rubinfeld (1995) provides the following view:  

“Courts often accept conventional practices of the statistics 
profession without considering whether such practices are 
valid in the context of litigation. The most apparent of these 
practices has been the determination of a statistical level of 
confidence associated with the burden of persuasion set by a 
court – preponderance of the evidence, clear and convincing 
evidence, or proof beyond a reasonable doubt. I have some 
doubt as to whether a specific level of statistical significance 
should be attached to a particular burden of persuasion. But 
I am convinced that if significance levels are to be used, it is 
inappropriate to set a fixed statistical standard irrespective 
of the substantive nature of the litigation.”2 

In the context of legal proceedings, type I errors involve the cost of 
concluding that an activity was illegal when in fact it was not, while type II 
errors involve the cost of wrongly concluding that an activity was not illegal, 
when in fact it was. Courts have implicitly understood the relative costs that 
are imposed by different choices of “burden of persuasion”. For example, 
Justice Harlan, quoted in Rubinfeld (1995), stated: 

“The standard of proof influences the relative frequency of 
these two types of erroneous outcomes. If, for example, the 
standard of proof for criminal trial were a preponderance of 
the evidence rather than proof beyond reasonable doubt, 
there would be a smaller risk of factual errors that result in 
freeing guilty persons, but a far greater risk of factual errors 
that result in convicting the innocent. Because the standard 
of proof affects the comparative frequency of these two types 
of erroneous outcomes, the choice of the standard to be 
applied in a particular kind of litigation should, in a rational 
world, reflect an assessment of the comparative social 
disutility of each.” 

Courts in civil cases ought to acknowledge explicitly that setting the standard 
for statistical proof involves just such an assessment of comparative social 

                                                      

2 Rubinfeld, Daniel L.,1995, “Econometrics in the Courtroom”, Columbia Law Review, vol. 85,  HeinOnline --- 
85 Colum. L. Rev. 1048 (1985) 
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costs. The specific details of the proposed analysis will depend in part upon 
one’s appraisal of the relationship between prior information about the 
liability of the defendant and the information that is presented at trial.  

In a merger impact assessment, if we take as a null hypothesis that the merger 
has no significant price impact, we should then interpret the meaning of type 
I and type II errors relative to that null and evaluate the seriousness, or make 
judgement relative to the “cost”, of each type of error. 

In this context a type I error corresponds to concluding against a merger 
when indeed that merger would not have had a significant price impact. A 
type II error corresponds to a judgement that the merger will have no price 
impact when it will in fact have a significant price impact. 

Decreasing the chance of one type of error frequently increases the chance for 
the other error type. In real-life situations, one can decrease the probability of 
both error types by collecting more data or having more information 
available. However, one must frequently decide which type of error should 
be minimized.  

5.1 Type I and type II error trade-off: an example 
To illustrate the trade-off that we have been discussing in this section, we 
provide below an example of possible hypotheses testing situations and the 
impact of changing the significance level of the test. 

To make the example simple we consider a situation where the alternative 
hypothesis is a number rather than a range (the more common situation). This 
abstracts from an additional problem in analysing the strength of a 
hypothesis test, which is the fact that we cannot easily compute the power of 
the test. The power of the test will vary for different values of the alternative 
hypothesis.  

The figure below depicts the distribution of the test statistic under the null 
hypothesis and the distribution of the test statistic under the alternative 
hypothesis. We start with an example where the variance of the estimates is 
low (standard deviation 1.5 in the first example). The null hypothesis is that 
the coefficient is equal to zero and the alternative hypothesis is that it is equal 
to 6. In a 5% one-sided test we reject the null hypothesis for values of the 
statistic above 2.47.  
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Figure 2: Hypothesis test at 5% with low estimate variance  

(standard deviation 1.5) 
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The figure can help us visualise the probability of failing to reject the null 
when the alternative hypothesis is the true value of the parameter. This 
corresponds to the area under the alternative hypothesis distribution below 
the critical value market in the figure. When the alternative hypothesis is true, 
a test statistic below 2.47 (according to which we would not reject the null) 
has a probability mass of .0093. This implies that the probability that we fail 
to reject the null when the null is indeed false is less than 1%. The probability 
of a type II error is thus 0.9% and the power of the test is 99.1%. 

In the figure below we consider the situation where the parameter estimates 
have higher variance (standard deviation equal to 3 instead of 1.5). We 
compare a 95% one-sided test, i.e. a test with a probability of a type I error 
fixed at 5% with the previous figure and with a 10% test, on estimates of the 
same variance. When the null is given by H0: b=0, we will reject for values of 
the test statistic above 4.94. But if the alternative is true, a test statistic below 
4.94 has a probability mass of 0.36. This implies that, when the alternative is 
true, we fail to reject the null with 36% probability. The probability of a type 
II error is thus 36% and the power of the test is 64%. 
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Figure 3: Hypothesis test at 5% and 10% with high estimate variance 
(standard deviation 3) 
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We have lost power compared to the previous testing situation because, in 
the present case, we have low precision of our estimates. This can happen if 
we have insufficient data points or a lot of variation in the sample data. The 
comparison between the two situations above illustrates the point that, for a 
given level of significance, i.e. a fixed level of type I error probability, the 
researcher will, in general, have no control over the power of the test, or the 
probability of a type II error. What the researcher can do is to evaluate and 
consider the trade-off between the two types of error and choose a 
combination that is deemed appropriate for the situation at hand.  

It seems, in this test, that a disproportionate weight is being given to type I 
errors, relative to type II errors. It is 7.2 times more likely to commit a type II 
error than a type I error. This may be reasonable in some situations but it 
certainly may not be reasonable in others. We may wonder, then, how much 
extra power would the test have if we accepted an increase in the probability 
of type I error. We illustrate this trade-off in the figure, moving the 
significance level from 5% to 10%. 

We consider therefore a 90% one-sided test, i.e. the probability of a type I 
error is fixed at 10%. When the null is given by H0:b=0, we will reject for 
values of the test statistic above 3.85. But if the alternative is true, a test 
statistic below 3.85 has a probability mass of 0.24, this implies that we will fail 
to reject the null with about 24% probability, if the alternative is true. The 
probability of a type II error is thus reduced to 24% and so the power of the 
test is now 76%. 

We have thus illustrated the trade-off between type I and type II errors. By 
accepting a type I error increase from 5% to 10% we were able to reduce type 
II error from 36% to 24%. 
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Whether this is a trade-off that we want to contemplate depends on the 
relative importance that the researcher puts on type I and type II errors. The 
situation where we have a probability of type I error of 5% and of type II 
error of 36% would be acceptable in cases where the perceived costs 
associated with a type I error are much higher than those for a type II error. In 
the example, we lost 5% in higher to error I probability and gained 12% in 
lower error II probability. 

This example is very simplified, in order to illustrate the trade-off between 
the two types of errors. In most applied situations we will not know the 
distribution of the test statistic under the alternative hypothesis. In a given 
merger we may take as the null hypothesis that the merger has no impact 
while the alternative is likely to be that the merger has “some significant 
impact” but this does not correspond to a number. For example, if we think 
that under the alternative hypothesis it is equally likely that the price impact 
of the merger is any number between 3% and 8%, the assessment of the 
power of the test in this case would be more complicated than what we have 
seen in the examples presented above. 

5.2 Significance levels and the relative costs of 
errors 

The choice of the significance level of the test will result in different 
combinations of probabilities of error I and error II. Both errors’ probabilities 
will also depend on the variance of the estimators. In some circumstances the 
availability and quality of the data will be better than others. When there are 
fewer data and data of a less reliable nature our inference process is more 
subject to error. If, in all circumstances, we hold fixed the level of error I 
probability we will have in some cases very large probabilities of error II and 
very small in other cases.  

But our relative concern about error I and error II should in fact not depend 
on how good our data are. This is a consideration that should be made based 
on the relative seriousness of the two types of error in this context: letting an 
anti-competitive merger go through versus preventing a merger that would 
have caused no consumer detriment. 

We may, for example, decide ex-ante that the two types of errors are equally 
serious. Or that a type I error is “twice” as serious as a type II error. Or 
indeed we may form any other consideration. After doing so, we should then 
pose the question about how to reflect these concerns in the choice of the 
significance level for hypothesis testing.  

We provide an example below to illustrate these choices. In the example, we 
are testing whether a parameter is equal to zero (e.g. merger price impact). 
We consider three cases with progressively increasing standard errors. The 
alternative hypothesis implicit in the computation of probabilities of error II 
is the hypothesis that the parameter is equal to 6.  
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In order to make the analysis as we exemplify below, the researcher has to 
make a decision on a level for the alternative hypothesis. This can be done 
case-by-case, based on some distinguishing feature of the alternative state of 
the world, i.e. the state of the world where our null hypothesis is not true. 

A common formulation for a hypothesis test is e.g. H0: b=0 Ha: b>0. The 
alternative hypothesis thus encompasses a very wide range of values. In 
practical terms, however, we often do not care about the power of a test to 
distinguish between 0 and 0.1. In the example of a merger case we may be 
concerned about distinguishing cases where the impact of the merger on 
prices is zero from cases where this impact is, say 6%. If the true price impact 
of the merger is 6% and our statistical test is unable to distinguish this from a 
situation where the impact is zero, then we would be unsatisfied with the test 
procedure.  

In the table below we provide the levels of error I and error II probabilities for 
different choices of significance levels, for each of the three cases of standard 
deviation of the estimates.  

In the first row we provide the outcome from the standard approach of a 
fixed 95% confidence level. As we can see, this choice has widely different 
outcomes in the three cases. In the case where the standard deviation is 
lowest it results in a possibly excessively low probability of error II, especially 
when we consider that we could have reduced error I further by increasing 
confidence to 98% (second line). In contrast, when the standard deviation is 
high the 95% confidence level results in a probability of error II of 36%, 
highlighted in the table. With the same confidence level of 95% in the first 
case we are five times more likely to commit error I than error II while in the 
other case we 7 times more likely to commit error II than error I. Since our 
relative preoccupation over the two types of errors should not be dependent 
on the standard deviation of the estimates (something that depends entirely 
on data features), it seems unreasonable that a constant confidence level 
would serve us well in all circumstances.  

The example illustrates the implications of the choices of significance level 
when we put different relative weight on error I and error II. The second row, 
for example, describes the choice of confidence level that, for each case, 
would minimise the sum of the probabilities of both errors. This corresponds 
to a situation where the researcher cares equally about both types of error. 
We see that as the standard deviation increases we need to become less and 
less demanding in terms of error I otherwise probability of error II will 
become very large.  
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Table 1: Example 

 case 1: standard error 1.5 case 2: standard error 2 case 3: standard error 3 
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Standard 
approach 95% 5% 1% >2.5 95% 5% 9% >3.3 95% 5% 36% >4.9 

minimise sum of 
errors 98% 2% 2% >3.0 93% 7% 7% >3.0 84% 16% 16% >3.0 

minimise sum 
with double 

weight on error I 
99% 1% 4% >3.3 96% 4% 11% >3.5 91% 9% 25% >4.0 

minimise sum 
with double 

weight on error 
II 

96% 4% 1% >2.7 89% 11% 4% >2.5 75% 25% 9% >2.0 

 

As the standard deviation of our estimates increases, we have to accept 
higher probabilities of both types of error. We have also constructed the 
confidence levels that should be chosen for two different objectives – in the 
third row we present the case where we want to minimise a weighted 
average of the probabilities of the two errors but we care twice as much about 
error I than we do about error II. In the fourth row we do the converse.  

It is interesting to note that in case 1 the 95% level corresponds to a very high 
relative weight put on error II (more than twice the weight put on error I). 
While in case 3, a 95% confidence level corresponds to a very high relative 
weight put on error I (more than twice the weight put on error II). This again 
illustrates the point that the choice of the significance level should be adapted 
to the particular features of each situation. 
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6 Conclusions 

In this note we have discussed hypothesis testing in the context of merger 
impact analysis, focusing on the implications of the choices of two main 
components of a hypothesis test: the choice of the null and alternative 
hypotheses; and the choice of the level of significance of the test.  

The way in which a hypothesis test about potential merger impact is usually 
formulated is based on a null hypothesis that the merger will cause no harm 
combined with a typical significance level of 5%. We have argued that, under 
likely scenarios, this formulation will too often result in a misleading 
conclusion that the authorities should let the merger proceed.  

We have discussed both components of the hypothesis test: the choice of the 
null hypothesis and the choice of the significance level.  

We resorted to the epistemology of hypotheses testing to look for guidance in 
the choice and interpretation of the null hypothesis. In a sense, this study 
concluded that we can only really learn something through rejection. The 
important conclusion from that analysis was that a result of non rejection of 
the null hypothesis is a result of little prescriptive consequence. This was 
illustrated with an example where both the null and the alternative 
hypotheses were non rejected.  

First, we make the argument that a non rejection of the null hypothesis is, by 
itself, an outcome lacking statistical force. This is because there could be a 
very wide range of null hypotheses that would also not be rejected by a 
similar test procedure. In particular, we could “not reject” that the merger 
causes no harm but also, with the same approach,  “not reject” that the 
merger is harmful.  

The conclusion from here is that “not rejecting” is a soft conclusion or even a 
non-conclusion. A problem then poses itself when a competition authority 
fails to reject the hypothesis that a given merger is harmful. Is it then 
appropriate to let the merger go ahead based on that non rejection, which, as 
we have argued, may have little statistical meaning? 

Our second argument is that non rejection of the null may be a very likely 
outcome in tests where the level of significance is set in a somewhat 
mechanical way. Researchers often require very low error I probability while 
allowing a considerably higher error II probability. This implies that, while 
they are unlikely to reject a null that is true they may be relatively likely to 
fail to reject a false null.  

The additional point we make after that, though, is that tests are constructed 
in such a way that there is often excessive bias towards outcomes where we 
fail to reject. When we demand a 95% confidence level, and the variance of 
our estimates is relatively high, we will “not reject” a very wide range of 
values for our null hypothesis. But, at the same time, these tests, while with a 
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fixed error I probability at 5%, have very high, often many times higher, error 
II probability.  

We then moved to a discussion of the choice of significance levels and the 
trade-off between error I and error II probabilities. In practical applications 
we will find tests where a mechanical choice of 95% confidence levels leads to 
very low power (i.e. high probability of error II – failing to reject when the 
null is false).  

In conclusion we would consider less biased a methodological approach 
where a careful consideration of these choices is made. In order to decide to 
stop a merger, an authority should attempt to reject the hypothesis that the 
merger has insignificant price impact for consumers. In order to clear a 
merger, an authority should attempt to reject the hypothesis that the merger 
will cause a significant price impact. In either case, the choice of the 
significance level should take into account the resulting probability of failing 
to reject when a given alternative is true. In each case, some judgement 
should be attempted as to the relative social cost of the two possible errors in 
this context: failing to stop an anti-competitive merger and stopping a 
competitive one.  

One possible avenue is to let prior information guide the choice of the null 
hypothesis and let the relative costs of the two types of errors guide the 
choice of the level of significance. There are therefore two distinct types of 
judgement that the researcher must do. The researcher may start out with a 
very strong prior that the merger will not be harmful. That should be 
translated into the statement of H0. But, at the same time, the researcher may 
believe that it is potentially more costly, from an economic welfare 
perspective, to let through a harmful merger than to stop a harmless one.  
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